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We have extended a particle-MHD model of discrete fluid ions and 
massless fluid electrons to the fully kinetic ions and massless fluid elec- 
trons so that such important kinetic effects, e.g.. the finite Larmor radius 
effects, are incorporated; 2D as well as 3D versions exist. As a result the 
model now exhibits ion Bernstein waves. We have also developed a 
linear theory of the model and obtained the linear dispersion relation. 
The dispersion relation is in excellent agreement with results from the 
model. Two important improvements in numerical procedures have 
been implemented; the first is the elimination of unphysical short 
wavelength disturbances by a smoothing technique: the second is 
the implementation of the Richardson extrapolation (extrapolation to 
Af = 0) technique in the velocity difference equations. These improve- 
ments increased the range of stability of the code greatly and enabled 
us to use time steps which are 10 times larger. As one application, we 
use the model to simulate the interaction of a neutral gas and an 
ambient plasma and observe the generation of waves with frequencies 
at integral as well as half-integral ion cyclotron harmonics for all k in 
accordance with some recent experimental observations in the JET 
tokamak. 0 1992 Academic press. I~VZ 
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INTRODUCTION 

The present work is the outgrowth of earlier work on the 
hybrid particle-fluid modeling which were presented in pre- 

vious publications [l-4]. In those articles a model which 
treated ions as fluid elements and electrons as a massless 
fluid was presented. It was shown how the two- and three- 
dimensional versions of that code predicted most MHD 
(including whistlers and ion cyclotron) waves and were in 
excellent agreement with linear analytic predictions. 

As we tried to simulate certain phenomenon which 
had been observed to generate ion Bernstein modes, we 
observed that the model did not yield sharp peaks at the ion 
Bernstein harmonics. 

At that point we realized we could treat the ions kineti- 
cally (as discrete particles) rather than as a fluid and we 
modified the code accordingly. This modification sharpened 
the peaks of the power spectra at the various ion cyclotron 
harmonics for all the wave modes. The code was then tested 
by comparisons of the observed dispersion relations from 
simulations with those predicted from linear analytic 
theory; the agreement was good. 

The code did, however, have some problems. In our 
investigation of the Bernstein waves, we found the code 
tended to be numerically unstable, since a high thermal 
velocity had to be used for the particles to see these modes; 
this tended to violate the CFL condition for the tail of the 
Maxwellian distribution. When looking at velocity space 
instabilities this problem became very serious. Therefore, 
very short time steps were required in order to carry out the 
computer run needed to see the physical instabilities. 

Another problem encountered was that the magnetic field 
showed the generation of very short wavelength distur- 
bances of the order of a few grid spacings, independent of 
how line a grid was used. These were clearly unphysical 
and associated with the numerical method. As a means to 
eliminate these unphysical short wavelengths we applied a 
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Fourier filter smoothing technique to the magnetic field, 
which eliminated the presence of modes with wavelengths 
below a certain size (i.e., usually of the order of, or shorter, 
than the particle size of the finite sized particles). Having 
done so, those short wavelength waves were eliminated but 
energy conservation became very poor. It was observed that 
by reducing the time step by a factor of two the energy 
conservation improved by a factor of two. From this we 
hypothesized that the B field smoothing introduced an error 
in the velocity computation which was to lowest order 
quadratic in the time step. This enabled us to improve the 
calculation of the velocity by the following means. We 
stepped the model through two time steps of size (Al)/2 and 
then went back and advanced it by one step of size At. 
Knowing the scaling of the error with At the difference 
between the two results was then used to calculate correct 
velocities and positions (this is identical to the deferred 
approach to the limit, or to the Richardson extrapolation 
used to solve ordinary differential equations). This method 
resulted in improved energy conservation by a factor of 400 
for time steps which were 10 times larger. The resulting code 
is in most ways better for practical problems in fusion and 
space plasmas. 

The organization of the paper is as follows. In Section 2 
the model is treated analytically and a dispersion relation is 
derived for testing the numerical model. In Section 3 the 
numerical model is extensively discussed and is tested 
against the analytic predictions of Section 2. Finally, an 
application of the model to the wave studies in the JET is 
presented in Section 3. 

1. ANALYTIC TREATMENT 

We know that the time evolution of the trajectories 
of a collection of charged particles in their self-consistent 
electromagnetic fields is identical to the Vlasov equation 
with a singular distribution function [S] (i.e., Klimontovich 
equation). Furthermore, if two particle correlations are 
ignored in the BBGKY hierarchy obtained by ensemble 
averaging the Klimontovich equation, the Vlasov equation 
is obtained. 

Before presenting our calculations, we should mention 
that in what follows our starting analytic equations are 
similar to the Vlasov-fluid equations of Freidberg [6]. 
However, we proceed in quite a different direction from 
Freidberg by using V-j =0 to eliminate E from the equa- 
tions in order to produce an analytic scheme which closely 
resembles the existing numerical method for our particle 
simulation model; this is presented in the next section. 

As a result we can use the Vlasov equation for our kinetic 
ions: 

(1) 

where f, is the ion distribution function with (we assume 
charge neutrality) 

n,=n,= fidv=n 
s (2) 

(n,, ni are electron and ion densities, respectively). 
The massless electrons however satisfy the equation 

v xB 
E+’ = 0, 

c 

where v, is the electron fluid velocity. In writing Eq. (3) 
we assume perfect conductivity along B, e.g., massless 
collisionless electrons 

E.B=O. (4) 

The current j is therefore 

j = -env, + e s 
vfi dv. (51 

This current j, according to Eq. (2) (quasineutrality 
assumption) must be divergence free. Thus, 

V.j=O. (6) 

This is equivalent to 

L=O, (7) 

where j, is the longitudinal current ( jL 1) k). This equation is 
used to find j,,, . The relevant Maxwell equations are 
Faraday’s law and Ampere’s law without the displacement 
current, i.e., 

VxE= -f; 

VxB=fij. 
c 

G-4) 

Substituting Eq. (5) into Eq. (9) gives 

C 
j=GVxB= -env,+e 

s 
f,vdv, (10) 

which then implies 

v =ejvfidv-(~/4n)VxB 
e ne (11) 
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As a result using Eqs. (3) and ( 1 1 ), we have 

v xB 
E= -i%-- 

C 

Bx(VxB.)+Bx{vf,dv 
4me nc 

Finally, using Eqs. (8) and (12), we obtain 

fJB 
-= 
at . 

Likewise, using Eqs. ( 1) and (3), we obtain 

(13) 

(14) 

Substituting v, from Eq. (11) in Eq. (14) gives 

x x 
z+"z-r 

e 
+M, 

(VxB)xB ejfivxBdv VXB 

4me - 
+- 

net C 

af,=,, 
av 

(15) 

Equations ( 13) and (15) form the analytic basis of our 
model and are similar in form to the Vlasov equation with 
self-consistent fields. They involve only fi and B (E does not 
appear explicitly). 

In order to obtain an analytic dispersion relation, 
Eqs. (13) and (15) have to be linearized as follows. First 

% 

/ 

Vu, 

FIG. 1. The geometry in velocity space. 

-io6B= 
7’, 

&kx((kx6B)xB,) 

+~x[(~j&+B,,] (22) 

noting that in the present model our dependent variables 
are the distribution function, f,, and the magnetic field, B, 
linearization is performed as follows: 

f,=fio+fi, (16) 

B=B,+B, (17) 

n = n,. (18) 

In these equations quantities with subscript one are lirst- 
order perturbations and those with subscript zero are 
equilibrium quantities. We take fro and no to be uniform 
throughout space. Using these relations in Eqs. (13) and 
(15) we obtain the following results: 

@Lcvx 
i 

B,x(VxB,) B,xjvfi,dv 

at 47cn,e - n,c I 
(19) 

ah1 ah e vxBo a?, dt+V'ar+M-'- c av 

+y (VxB,)xB,- 

M, i s 
j;,vxB,dv+vxB, ~. 

4nn,e n0c C 1 

afin o .-= , 
av (20) 

In deriving Eq. (20) we have assumed V x B, = 0. 
This Eq. (20) can be cast into a much simpler form if one 

goes into cylindrical coordinates in velocity space. We do 
this now; the geometry is depicted in Fig. 1 for a case in 
which the magnetic field direction i is along the y axis. 

Recalling that 0,. = eB,/M,c, the third term in Eq. (20) 
simply is: 

(vxo,.)'vof,,= -w,(v xVJvfl,=m,$$ (21) 

Upon assuming fii = x,(v, 6) ei(k’x-O”) and B, = 
6Be. r(k-x -WI) and using Eqs. (19))(21) and the fact that 
many equilibrium distributions of interest are isotropic and 
the last term in Eq. (20), (vx B,/c.df,,/av=O)‘, then the 
following pair of equations are obtained2: 

’ We drop tildes, with the understanding that from now on 6B and f,, 
will be functions of w and k. 

2 Please note that in the term next to the last in Eq. (20) the integration 
in velocity space has to be carried out before making the dot product and 
thus the criteria which holds for the last term does not apply to it. 
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From Eq. (22) one simply obtains 

&(ikxhB)xB, 
0 

6B= -~kx[(~~~i,(,)“dv)xB,,I. (27) 

-~(~f&v)xB,}~~. (23) Taking the cross product of this equation with k gives 

These two Equations (22) and (23), will be used to derive 
kxGB= -;(kk-~z~)~[(~$jJv)vdv)xBo]. (28) 

the analytic dispersion relation for the case of perpendicular 
propagation of the waves; oblique waves become heavily 
Landau damped and are not as important. 

If one knows (kk - k*fi )- ’ ( fi is the unit dyadic tensor), - - 

Using.Lo(v) =hO(vl13 v,), we obtain then one can compute (1 (l/n,) fil(V)v dv) x B,. In this case 
since k = (k,, 0, 0), 

(24) av au,, a~, - 

where d, is a unit vector along vI. 
We perform the calculations in cylindrical coordinates in 

velocity space. Also, since we are only interested in studying 
the perpendicular propagation, we take k = (k,, 0,O) 
without any loss of generality. 

In Eq. (23) the quantity inside of the brackets does not 
have a j component, since it is the cross product of some- 
thing with Bo, which is along j. Also equilibrium distribu- 
tions must be symmetric around B, and, hence, independent 
of 8. As a result Eq. (23) becomes 

(29) 

and so the determinant of (kk - k* fl) is zero and therefore 
it does not have an inverse. In orderio make it invertible, let 
us add an infinitesimal number E times the identity matrix to 
it, and then compute (J (l/n,) f,i(v)v dv) x B, in the limit as 
E + 0; Eq. (28) is identical to 

lim -‘(cI) -t-kk-k*g) 
E’O 0 - 

;JI(v)vdv)xBo]=kx6B. (30) 

(25) 

Likewise Eq. (22) gives the following, given the fact that 
k.B,=O, 

This equation after some algebra reduces to 

is ;f’l(vb dv) x Bo 

(31) 

(26) This implies that 

As a result, SB 11 B, as expected for perpendicular propa- 
gating waves. 

Next we solve for (l/n,) JfiI(v)v dv) x B, from Eq. (22) 
in terms of known quantities such as 6B, B, and substitute 
it into Eq. (25). 

U 
-&WV dv) x Bo 

= +(v)vdv)xBO] i=;SB,f. (32) 
I x 
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Also, using vector identities it is true that 

-i(kx6B)xB,=ikX(B,.6B)i. 

Thus using Eqs. (32) and (33) in Eq. (25) gives 

(33) 

6 -i(o-kk.ucose)f,, +mCz 

e 1 aho 
=M, 4nn,e ( 

- ik, 6B, B, 
> 

zcose 

x0 
+ &F 6B, x sm 0. (34) 

I x 

This equation is simply a first-order differential equation for 
,fil ; i.e., it has the form 

P(Wfi, +$= g(e), 

where p(8), g(8), and v and K are defined to be 

(35) 

p(B)= -(g-2)= -i(v-rcos0) (36) 

g(e) = 
( 

1 ew 
4nn,M,o, 

ik, B, cos e + 
M,ck,o, 

sin 8 
> 

x6B afo 
-v au 

(37) 

kv v=w,=-” (38) 
0‘ 0,. . 

As a result the solution to the Eq. (34) is obtained upon 
multiplying it by an integrating factor p(e) defined to be 

~(e)=,IPdB=,~i(vB-Ksln8). 

With this, the solution to Eq. (34) is 

(39) 

I 

0 
= ei(v8 - K sm 8) e -t(t,#'- K sin 0') 

-co 

( 

ik., B, cos 8’ 
e” sin e’ X 

47cnoMio, 
+ 

M, ckw, > 
6B,, g (et) de’. (40) 

Substituting thisf,,(O) into Eq. (26) and using the fact that 
B,=(O, B,,O), k=(k,,O,O) with k.v=k,ucosO finally 

results in the following dispersion relation when 6B, is 
eliminated from both sides of the resulting equation: 

2n 

c i 

0 

de de’ e af iv(tl- tl')- iti(sm Oprin 8') 2 

0 --Ix) au 

x cam 8 
ik2 c: 
X cos 8’ + sin 8’ . 
UU‘ 1 

(41) 

Since fro = fio(Ull, u,), it does not have any explicit 0 
dependence; the integrations over t9 and 8’ can be carried 
out in much the same way as was done by Bernstein [11] 
(please see the Appendix A). The following analytic disper- 
sion relation is obtained for a Maxwellian background 
distribution function: 

l+ s,tm ,&,[w2~]x{(k&) 

[(2n+l)w-2n(n+ l)o,.] 0, 
(0 - no,)(w - (n + 1) CD,.) 

xJn(%) Jn+l (%)])+.,xa; 

CJ,W, dw)12 CJ,,(k, 40,)12 
w+(l-n)o,-o-(l+n)o, (42) 

where v=vl, CO,. is the ion cyclotron frequency, and cA is 
the Alfven velocity, a, is the perpendicular thermal velocity 
of the ions. 

2. NUMERICAL MODEL AND ITS TEST 

In this section we shall present the numerical algorithm of 
our hybrid model with its tests against analytic predictions. 
Some words about related efforts in hybrid modeling of 
plasmas is in order. Two of the best examples of authors 
who have developed hybrid models and successfully applied 
them to plasma physics problems are those of Winske [7] 
and Horowitz [8]. Regarding numerical techniques and 
methodology, the main difference between their methods and 
our work is the successful elimination of E in our scheme 
and the consequent elimination of extra computation 
imposed by the E field push equations. 

The relevant equations for our particle model are 

cLv, 

&(E+q); 
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i is the subscript specifying each and every ion. Equa- 
tions (43) and (44) are identical to the Vlasov Equa- 
tion (14) as mentioned before. Using v’ as the average ion 
velocity (i.e., v’ = s Vfi dv/n) in a given cell in Eq. (12) gives 

E= - Bx(VxB)+Bxv’ 
47cne c . (45) 

Clearly v’ in Eq. (45) is the same as the ion fluid velocity, vr, 
associated with a grid cell. Using Eqs. (44) and (45) gives 

dv. e L-- (vi - v’) x B e Bx(VxB) 

dt Mi C =-Mi 4me ’ (46) 

Upon using Eq. (45) in Eq. (8) we obtain 

dB 
-=cvx 

Bx(VxB) Bxv’ 

at 4me (47) 

At this point we normalize Eqs. (46) and (47), using the 
scheme, 

a ca -=A- 
at da; ’ &. 

cs 

Then Eqs. (46) and (47) reduce to the following set (tildes 
are dropped): 

dv. A ;fi’=l(v;-~r)~B+~(VxB)xB 

aB 
-=Vx at i 

$:Bx(VXB)+VJXB ; 
I (51) 

please note that A = c/o,~ is the collisionless skin depth for 
the ions, and A = c/o,,~ also is just the grid spacing; both 
have unit values in computer units; c, = Jm. 

Equations (50) and (5 1) have been pushed in the model 
in the following way: B, the particle positions ri (and the 
density n) are known at integer time steps, the particle 
velocities are known at half-integer time steps as illustrated 
in part (a) of Fig. 2. First vi is pushed from time step I - $ 
to time step I using Eq. (50) and the values of B at f, vi, and 
v’ at I - 4. Note that v’ = vr, where vt is the ion fluid (average 
per cell) velocity which is obtained using the area weighting 
interpolation scheme extensively discussed in [3,4]. Next, 
B is pushed from time step 1 to I + 4, using Eq. (51) and the 
value of v’ and the spatial average of B at time step f. This 
is the auxiliary step of the Lax-Wendroff scheme. 

Next, the ion velocities vi are pushed again from the time 

a 

_8,~, n, P 
c-- , \ 

I-1 ;4 I 4+1 1+2 
I 

v 
4-112 C+1/2 .l+33/2 

b 

!!t 
4+1 .!+2 

r!t 
4+1/2 .!+3/2 

I 
.!! 1 

c+1/2 p+1 P+3/2 

8' m t 

a+114 E+3/4 .P+ 5f4 

FIG. 2. Time stepping scheme for B, r, n, v  in the parallel run. 

step I to I+ $, using the values of B, vi, and v’ at 1. These 
values of B and v’ at I+ i are then used to advance B all the 
way to I + 1. This is the main step of the Lax-Wendroff 
scheme; both steps together form a Lax-Wendroff method 
for computing B. The particles are used to compute the 
plasma density n and the average ion velocity per cell, v’, 
twice at each time step, once for the half time step and 
another time for the full time step, using the standard area 
weighting method. A summary of all of these steps is given 
in Table I, where n is the unit dyadic tensor, and the sub- 
scripts i, j refer to grid locations, while a is the cutoff length 
in doing the B field smoothing, i.e., the length which 
corresponds to the shortest allowable wavelength in the 
simulation. Pressure simply does not appear here, since we 
are treating the ions kinetically and, thus, they respond to 
the Lorentz force and not to the fluid pressure. 

Simulations were performed using the geometry of Fig. 3 
and no smoothing of B (a=O). Plotting contours of 
magnetic field strength showed that very short wavelength 
disturbances on the order of grid spacing were produced as 
shown in Fig. 4. As Fig. 5 also indicates, using a liner grid 
system only resulted in shorter wavelength disturbances, 
even though the ratio of the grid size to the Larmor radius 
was much smaller. Wavelengths of the order of the grid 
spacings are unphysical and must be generated by the 
numerical method of solving for B. 

Unphysical short wavelengths can cause artificial numeri- 
cal heating of the ions [9]. This also makes sense physi- 
cally, since unphysical short wavelengths are like a heat 
bath in which the particles are embedded. Because of this we 
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TABLE I 

Numerical Algorithm of the Vlasov Iion Fluid Electron Model 

1. Compute density n’ from particle positions by interpolation 
2. Compute the magnetic force: 

3. Push the ion velocities half a time step: 

y’z y’- ‘0 + (+ ‘7 -,+ ‘iz) x B’,4@ + F’, At/2 

4. Compute average ion velocities per cell v” from particle velocities 
5. Push B half a time step as the auxiliary step of the Lax-Wendroff 

scheme: 

where (B)!,=a(EI+,,,+BI_,,,+B:,+,+B!,,~,)intwodimensions 
6. Smoothing of B, v’, n, e.g., 

Bl. i - FFT f)(k)--+ n’(k) = e-‘2”2’28(k) = B,,, 

7. Push the ion velocities another half a time step: 

8. Push positions half a time step: 

r!+ 10 = ri + vl+ 112 A@ 

9. Compute average ion velocities per cell v”+ “* by interpolation. 
10. Push B a full time step as the main step of the Lax-Wendroff scheme: 

B’+‘=B’+ Vx 
( [ 

v”+‘“xB’+“‘+!%-V 

11. Smoothing of B, v’, n, e.g., 

B ,,,= B(k)- B’(k) = e+*%(k) 3 B,,, 

12. Push positions half a time step: r’+ ’ = r’+ in + v’+ ‘I2 AI/~ 

Note. Initially we have: B’, v’~ ‘12, r’ 

eliminated such short wavelength waves by applying a k 
space filter (a is the cutoff length): 

B’(k) = B(k) e-k2u2’2. (52) 

The quantity a determines the maximum k (minimum 

2 

4 

Y 

X 

FIG. 3. Geometry of the plasma model. 

wavelength) and is adjustable to determine its effects on 
results. 

As Fig. 6 indicates, the short wavelength disturbances 
were eliminated as a result. This resulted in the energy 
conservation becoming very poor. We observed, roughly, 
an energy gain of 10% in a few cyclotron periods. The 
energy conservation improved by a factor of two when 
the time step was halved, e.g., Aw = 14% in ~,.~t = 48 
for At = 0.00625/w,.,, while Aw = 7% in wcit = 48 for 
At = 0.003125/w,, (w is the total energy of the system and 
Aw is its change). Consequently for At + At/2, Aw -+ Awl2 
at the same value of o,.; t; this indicates a linear dependence 

Y 

0 10 20 30 

T =160 X 

FIG. 4. B field contour plot of a 32 x 32 system without smoothing. 
Thermal runs. VT = 0.1. B,,, = 4.0. 
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0 20 40 60 

T=32,5 X 

FIG. 5. B field contour plot of a 64 x 128 system without smoothing. 

of A Wtot on At. Assuming that the error is in the computa- 
tion of v (where most of the energy is), we concluded that 
the error in v, (6~~) is (SViCC&;(At)’ for each time step and is 
cumulative. The error introduced in a given time step is 

Aw = c [(vi + 6v,)’ - $1 

z 1 2vi 6Vi = C 2ViEi(At)2. (53) 
I I 

As a result, the total error over a time T is 

= C 2Vi TEE At. (54) 

There is also an analytic approach which arrives at a similar 
scaling; it is given in Appendix B. 

This suggests that a time integration method similar to 
the so-called Richardson extrapolation or the deferred 
approach to the limit used for ordinary differential equa- 
tions discussed in [lo] would be effective. This method 
works as follows: if one somehow knows the dependence of 
a dependent variable (here vi) on the independent variable 
step size (here At) in a difference scheme, then one can make 
two or more computations of that dependent variable using 
different step sizes and use those results to compute the zero 

0 10 20 30 
T=lOO X 

FIG. 6. B field contour plot of a 32 x 32 system with smoothing. 
Thermal run. V,= 1 .O. B,, = 0.25. 

order dependence or the “correct value” of the dependent 
variable. 

In order to eliminate the error we made parallel runs with 
At and At/2, and at the end of each full time step we cor- 
rected the velocity in the following manner: If v{ indicates 
the velocity from the At/2 run, then upon going from time 
step I+ 1 to I+ 5, we introduce an error of Ei(At/2)’ for each 
time step and vl is given by 

V:(~+~)=Vi=(i+~)+,.i(~~, (55) 

where v,, is the correct velocity at I+ 5. If we push Vi(l+ 4) 
one time step At, we introduce one error of size Ei At2 and Vi 

is 

Vi(E+ t) = V,(Z+ ~) + Ei(At)2. (56) 

Upon eliminating si from Eq. (55) and Eq. (56) one obtains 
for the correct velocity: 

Vi,(Z+~)=2V:(Z+~)-Vi(Z+3). (57) 

Figures 2(b) and 7 illustrate this method and its flow chart, 
respectively. 

As a result, conservation of energy was improved by a fac- 
tor of 400 for the same time step and time duration as shown 
in Figs. 8 and 9. The improvement was adequate to increase 
the time step by a factor of 10. 
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run with the time step At 

Y , B ,1: initially known at to 

push once with the time &ep At 

compute Y , Fi , E 

att=to+At 

- 

2nd run compute v’ , B’ , r’ 

at (41, att=t,,+At 

FIG. 7. Flow chart of the parallel scheme. 

23,000 

0 200 400 600 800 

t 
FIG. 8. Total energy (y) versus time (t) before the insertion of the 

“parallel run” subroutine with the time step Af = 0.00625/0,~. The error in 
energy = 14.1% 

0 200 400 600 800 

t 

FIG. 9. Total energy (y) versus time (t) after the insertion of the 
“parallel run” subroutine with the time step Af = 0.00625/~,~. The error in 
energy = 0.032 %. 

A reasonable question to raise at this point is: we made 
the corrections on only the velocity, but what about the 
magnetic field and the particle positions? Correcting the 
velocity after each dt really gives most of the corrections to 
ri because ri is pushed by vi and if we keep the correct vi, 
errors in ri will stay very small. Since the same is true for 
pushing B, we can expect the same conclusion to be true 
about it as for r,. As Figs. 10 and 11 indicate the fields taken 
with the half-time step pusher and that with the full time 

Y 

T=20 X 

FIG. 10. Contour plot of B field at half time step. 
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T=20 X 

FIG. 11. Contour plot of B field at full time step. 

step pusher at roughly the same time3 (note, they are off in 
time by At/4 as Fig. 2(b) shows) are then quite close. As a 
result we did not introduce these corrections, although 
introducing them might well result in some further 
improvement. 

’ That is, about 100 time steps. 

Correlation Density KX=5 

Finally the model was tested against linear analytic 
prediction of the dispersion relation (Eq. (42)). Figure 12 
shows a typical power spectrum. One clearly sees the 
existence of clear peaks at integer multiples of the ion 
cyclotron frequency. While Fig. 13 compares the analytic 
results (solid curves are solutions of Eq. (42)) against 
simulation results (asterisks are taken from the power 
spectrum of the density). The agreement is good in light of 
the finite sized grids and finite sized nature of the particles; 
corrections for these effects should improve the agreement. 
There is, however, in general a branch in which o -P 0 as 
k, + 0 and it is missing in that figure. We believe this is 
because this figure corresponds to a case in which the Alfven 
speed is less than the ion thermal speed, cA = 0.125 < cT. = 
1.00 with cr the thermal speed of the ions; i.e., for such a 
case these modes should show something like Landau 
damping. The interested reader is referred to Fig. 21 for the 
dispersion relation of a simulation in which cA z 6.8 and 
cT s 0.82; one can clearly see a branch in which w  + 0 as 
k, + 0. A more detailed discussion of those results is given 
in the application section.4 Finally Fig. 14 shows the orbits 
of sample particles taken at random. The circular orbits 
clearly show the ion motion at w,i which should give rise to 
Bernstein like waves. 

In conclusion the model has been given a rigourous set of 
tests and passed them all. It has so far been used to study 
instabilities due to an ion ring in velocity space along with 

4 Fredricks [ 151 has also derived a fully electromagnetic dispersion 
relation yielding a similar mode. 

KX = 8 KX=9 

,008 

FIG. 12. A typical power spectrum for the density, o, = 0.125 (simulation results). 
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FIG. 13. Analytic versus simulation dispersion relations for per- 
pendicular propagation. 
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such important effects as those that give nonlinear wave 
saturation. As a direct application, the model has success- 
fully explained the generation of fluctuations which have 
been observed on the JET and TFTR tokamaks around 
harmonics as well as half-harmonics of the ion cyclotron 
frequency which we show in the applications section. Also it 
has been used to study the interaction of an outflowing 
cometary gas and the solar wind with successes in 
qualitatively demonstrating complex plasma effects shown 
in the AMPTE experimental results [14]. We have also 
developed a three-dimensional version of this code which 
we believe could be applied to a wide range of problems in 
fusion and space plasma physics. For more general 
conclusions please refer to the final section. 

3. APPLICATION: SIMULATION OF THE ION 
CYCLOTRON EMISSION IN THE 

JET TOKAMAK 

One of the dominant means of heating tokamak plasmas 
has been through the injection of fast neutral beams. The 
ionization of these neutral beams predominantly happens 

60 Particle 20286 V,= 1.147 

0 20 40 60 

sot Particle 24640 V,: 2.18f 5 

0 . ..I. . ...,,., 1 
0 20 40 60 0 20 40 60 

FIG. 14. Trajectory of some particles plotted at random taken at T= 6(2rr/o,) 
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through charge exchange with the hydrogen ions of the 
plasma; the resultant high energy ions are trapped in the 
magnetic fields of the tokamak. 

Recently in the JET and TFTR tokamaks they have 
observed superthermal ion-cyclotron emission from ohmic- 
and neutral-beam-heated discharges [ 123. For neutral 
hydrogen beam injection in a deuterium plasma, in par- 
ticular, they have observed very sharp peaks at multiple 
harmonics and half-harmonics of the cyclotron frequency of 
the hydrogen ions. If the neutral beams are not turned on, 
no sharp peaks at these frequencies are observed. Please 
refer to Fig. 15. 

The authors (Cottrell et al.) of the paper [12] conjec- 
tured that these peaks can be attributed to instabilities 
arising from the “anisotropic velocity distribution created 
either by hydrogen neutral-beam injection (NBI) or by 
large radial orbit excursions of the centrally born fusion 
products.” The source of energy for such instabilities would 
be ring or shell distributions in ion velocity space created by 
injection of the ions or by fusion reactions. Here, we report 
on simulations testing both of these conjectures; i.e., 
simulating both neutral beam injection and the fusion 
product experiments. We used our Vlasov ion fluid electron 
model to model the JET experiments; i.e., the analytic 
treatment which led to the dispersion relation Eq. (42), and 
Figs. 12, 13, and 14 form much of the basis for the material 
of this section. 

3.1. Simulation of the Neutral Beam Injection 

In the experiments the electron density was n, = 1014/cm3, 
the electron temperature was T, = 7.5 KeV, the ion tem- 

50 
Frequency f (Mhz) 

FIG. 15. Ion cyclotron emission spectrum measured before and during 
4-MW Ho neutral-beam injection into a D + limiter plasma [ 12,13 1. ICRF 
discharge: f0 = 33.4 MHz; ---, Pw = 30 kW; ---; Pw = 100 kW; 
u = peak saturation. 

perature Ti = 15.0 KeV, the beam drift energy was 
45.0 KeV, the electron cyclotron frequency o, = 100 GHz, 
so our approximation of massless electrons is good. The ion 
cyclotron frequency O,i = 50 MHz, the Alfven velocity 
cA = 10’ m/s, the injection of the neutral beams were 
performed at 58” with respect to the toroidal magnetic field 
of the tokamak; the magnetic field was not homogeneous (it 
had a hyperbolic dependence on the radial distance from the 
center of the torus) and the ionization time of a neutral was 
on the average lo-‘s, during which time the neutrals 
penetrated 30 cm or so into the plasma. We adjusted all the 
simulation parameters to these; the normalizations outlined 
earlier (Eqs. (48) and (49) were used and the ratio of the 
Alfven speed to the ion acoustic speed was adjusted to the 
above parameters; i.e., simulation velocities were computed 
upon normalizing with respect to the c, = (T, + TJM 

t i 

4 - ..‘..:. 

vu 0 

1 

-4. . ““.y, . ..I 

m  9 
I , 0 -3 00 

1 2 55r,, uz 

FIG. 16. Evolution of a ring in velocity space with a drift speed 
perpendicular to the external magnetic field B,, = BOi. 



HYBRID VLASOV-FLUID MODEL 289 

with the T, and T, as given by the above. With these then, 
oCi = 6.87 in the simulations, where ccc, corresponds to the 
protons’ or H +‘s gyrofrequency. 

In order to simulate such an experiment and study its 
wave modes, we took advantage of the fact that in the 
experiments one has one species of the ions at a relative drift 
speed with respect to another. As a first step, we did an 
initial value simulation of a group of energetic ions inter- 
acting with a background plasma; i.e., we simulated a ring 
in velocity space (ring velocity perpendicular to B,) inter- 
acting with a background depicted in Fig. 16. The ring 
comprised f of the total plasma. The temperature of the 
energetic ring was 0.8155 in computer units corresponds to 
15 KeV as in the real experiment, while its speed of 3.00 in 
computer units corresponds to 200 KeV. As mentioned, the 
beam drift energy in the real experiment was only 45.0 KeV. 

k, = 0 k, = 1 

k, = 0 k, = 1 

1 
E-07 , ,i 

b 74 s 

k, = 1 k, = 2 

FIG. 17. (Top) Time evolution of the B’(k, = 0, k, = I)/2 for the ring FIG. 18. 
run. (Bottom) Same as the top, but without the ring. Note the difference in 

(Top) Time evolution of the f?2(k, = 1, k, = 2)/2 for the ring 
run. (Bottom) Same as the top, but without the ring. Note the difference in 

scales. scales. 

Here we used a higher beam drift energy to allow a faster 
diffusion of the beam into the background to avoid making 
long computer runs. In order to see the effect of the ring on 
the energy per eigenmode of the various wave modes, we 
then performed a simulation without the ring being present, 
but with exactly the same initial conditions as the one with 
the ring present. 

We analyzed the energy per mode of many modes as a 
function of time to see their time evolution; i.e., we plotted 
B’(k,, k,)/2. Figures 17 and 18 show such results for two 
modes with and without the ring present. These plots are 
two of the many which show the energy per mode with the 
ring present to be roughly an order of magnitude greater 
than those without the ring. They also show that the lower 
wave number modes (e.g., (k, = 0, k, = 1) shown here), in 
general, more strongly excited. The plots of Fig. 18 also 

40 

22 

2 3 

kz = I 6, = 2 

581/102/2-5 
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show that even though the higher wave number modes have 
less energy, their peaks correspond roughly to the w  = oCi 
harmonic, because given oCi = 6.87 in this simulation, 
5,i = 0.91 which implies that the simulation time of 50, 
shown on the plots, should contain roughly 55 proton 
gyroperiods; there are 57 peaks in the plots of Fig. 18. Next 
Fig. 19 shows a typical power spectra for the ring simula- 
tion. There are fairly sharp peaks at o = oCi and o = 2W,i in 
these plots for oCi = 6.87. 

Finally, Fig. 21 shows the dispersion relation corre- 
sponding to the lower pictures in Figs. 17 and 18; i.e., the 
pure thermal runs of this section. This should be contrasted 
with Fig. 13 in which no low frequency branch in which 
o + 0 as k, + 0 was observed. As mentioned before, we 
expect the low frequency branch will show Landau damping 

in that case, while here this is not so, since the Alfven speed 
is much greater than the ions’ thermal speed. Furthermore, 
another glance at Figs. 17 and 18 reveals the presence of 
envelopes with frequencies in the lower hybrid (o N kc*) 
range with the carrier frequency at o = oCi. The presence 
of the peaks at w  = O,i are, of course, more pronounced 
when the ring is present. The envelopes, being of a lower 
frequency than the carrier, further testify to the survival of 
the lower frequency branches and a lack of any Landau Like 
damping for the JET parameters. 

As a next example we simulated the more realistic case 
in which the background plasma was composed of the 
deuterium or D + and the beam was composed of the 

k,=12k,z3 

k, = 7 k; = 2 

55 

30 

5 

El9 

k, = 13 k, = 3 

0 
El1 

k, = 9 k, = 2 

k, = 8 k, = 2 

FIG. 19. The power spectra of the B, component for the ring run. 

20 . 

2- 
E?l Al. 

4 R 0 R 4 
/ I 

k, = 14 k, = 3 

FIG. 20. The power spectra of the B, component for the 16 % H + and 
84%D+,withw,=6.8andw,=3.4. 
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012345678 9 10 11 12 13 14 

FIG. 21. Dispersion relation of the thermal simulation of the D+ 
plasma: 0. simulation results; ---, analytic results. 

hydrogen ions H +; the beam composed 16% of the whole 
plasma.’ Figure 20 shows typical power spectra for that 
simulation. Here w,, = 6.87 corresponds to protons while 
wed = f oci z 3.4 is the deuterium cyclotron frequency. Thus 
the peaks at w  = 3.4 must come from the deuterium species 
in the plasma. This can in fact be the main reason for the 
observation of the half-harmonic peaks as recorded by the 
Cottrell et al. [ 121. The peaks at 6.8 can be a combination 
of the second harmonic of D + and the fundamental of H +. 

3.2. Simulation of the Fusion Product Experiments 

In this subsection we report simulations of energetic 
fusion products in a deuterium background. The case that 
we simulated corresponded to a JET experiment in which 
the D+ temperature was 10 KeV and they comprised 
99.9 % of the plasma. Protons which comprised only 0.1% 
of the plasma, corresponding to the fusion products, we 
took their energy to be 1 MeV in the perpendicular direc- 
tion and 0.1 MeV in the parallel direction; i.e., (T,), = 
1 MeV and (r,),, = 0.1 MeV. The Alfven speed was 10’ m/s 
as before, while the speed of the 1 MeV protons is roughly 
9.78 x IO6 m/s. The proton gyrofrequency tiCi = 10.92 in the 
simulations. 

In this case we did not use a ring in velocity space as we 

5 All the percentages in this paper correspond to the particle number 
percentages. 

k, = 13 k, = ‘L 

k, = 14 k, = 3 

FIG. 22. The power spectra of the B, component for the fusion 
product run with wCd = 5.46, wCi = 10.92. 

had done in the previous subsection, but rather we just 
allowed 0.1% of the particles in the simulation to have the 
temperatures corresponding to those listed above for the 
H + and have the proton charge to mass ratio, while the rest 
of the particles in the simulations have their temperatures 
corresponding to that of the D+ with its corresponding 
charge to mass ratio of one-half. The power spectra shown 
in Fig. 22 correspond to these simulations. There are clear 
and sharp peaks at o = nwcd (w,d = 5.46 is the D+ gyro- 
frequency) in confirmation of the conjecture that the free 
energy available from the fusion products is one possible 
driver of those modes. Finally, Fig. 23 corresponds to 
simulations of a case in which the initial magnetic field was 
not homogeneous but had a linear profile along the x axis; 
i.e., B,, = B,( (L - x)/L), where x is just the distance from the 
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?----ii\i-1 
in particular, it was generalized to a fully kinetic treatment 
of the ions; use of an extension of the Richardson extrapola- 
tion method for ordinary differential equations was intro- 
duced for the particle push and found to improve energy 
conservation and allow larger time steps. Such revisions of 
the model proved vital in extension of the model to the 
applications involving finite Larmor radius effects. In the 
case of the simulation of the JET experiment, we would not 
have been able to obtain ion Bernstein waves without the 
use of the kinetic version of the model. The obtaining of 
sharp spectral peaks required long runs (e.g., 50 proton 
gyroperiods on average) for which the large time steps 
allowed by the Richardson technique were necessary. 

k, = 10 k, = 3 

k = 11 k, = 3 

El5 Y$ $2 
I I 

k, = 10 k, = 2 

FIG. 23. The power spectra of the B, component for the fusion 
product run with the inhomogeneous magnetic field centered at wti = 5.46. 

left boundary of the simulation box and L is the horizontal 
length of the simulation box (this models a toroidal 
magnetic field with L as the major radius of the torus for a 
large aspect ratio tokamak).6 Figure 23 gives the power 
spectra corresponding to that case; there are peaks at 
roughly o = noCd (n = integer) for the inhomogeneous 
initial magnetic held profile even though we do not have a 
unique oCd or o,,. 

CONCLUSION 

In this paper the model has undergone a great deal of 
evolution from that first constructed by Leboeuf et al. [ 11; 

61n the actual experiment the magnetic field profile had hyperbolic 
dependence on position; i.e., B,,, = B,/x but our code became numerically 
unstable for such a profile. We next evaluate I, and I, as follows. 

Another unique feature of the model is its ability to 
predict so many different types of wave modes; the kinetic 
version added ion Bernstein waves to the already existing 
list of the waves which were predicted by the model. Since 
waves are so fundamental to understanding plasmas, any 
code which enables one to study so many different kinds of 
waves is indeed of great value. 

In conclusion the added physics that the model contains 
should give improvements over the results of MHD codes 
which are now generally used in space and fusion research. 

APPENDIX A: DERIVATION OF THE 
DISPERSION RELATION 

In this appendix we derive the dispersion relation for the 
perpendicularly propagating waves, i.e., Eq. (42). The 
starting equation will be Eq. (41); i.e., 

277 

X 
s s 

dt’ ’ de’ e ?F ,“(e - 8’) ~ rh-(sin e-sin es) 10 

0 -cc au 

x cos 8 
ik2 c2 
xA cos 8’ + sin 8’ 
00, 1 (58) 

This equation can then be cast in the form 

l=j +a, du,, jy; 
-cm 0 

where I, and Z2 are defined to be the following integral 
equations: 

dot cos 0 cos 0’ @B - 0’) - idsin 0 ~ sin 8’) 
(60) 

dot cos 0 sin 0, eiv(B - 0’) - iic(sin B-sin 8’). 
(61) 

L 
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Let us define 4 = f3 - 8’. Then Eq. (60) will reduce to the where z is complex. With t = eie this becomes 
equation: 

+CC 

I, = d6 cos tl eivQ + irc(sin(tJ - 4) -sin 0) 
,iz sin D = 

1 einOJ,(z) 

n= -cc 
(70) 

(62) which results in the relationship 

We know that for any function II(#) such that h(d) = 
h(d + 27~) (e.g., periodic in 4) the following important 

eirc sin(0 - 4) = 
f eince ~ +)J,(lc). (71) 

property holds, i.e., II= -00 

s om dd e’““h(qi) = 2 j2r’“’ I) dcp e’““h(d). 
Using this identity, along with cos 0 = (e” + edi’)/ in 

(63) Eq. (68) gives the relationship for I,, 
n=O 27m 

Next, by letting d’ = 4 - 2m, Eq. (63) will reduce to 

rT d# e’““h(d) = Q(v) [‘” dd’ e”‘)‘h(d’), (64) 
JO JO 

where xe -‘n)Jm(K) J,(K). (72) 

Q(v)= f  eiYZnn. (65) Using the trigonometric identities we can perform the 0 
PI=0 integrations, i.e., using 

Consequently, I, reduces to 

s 

2n 
deei0(n+1-m)=2&,+, m  (73) 

1, = Q(V) ji’ do COS 8 
0 

I 

2n 

deei8(“~“-‘)=2~ns,,+,, (74) 
0 

X dqi cos(B - 4) e iv) + rh-(sm(B - 4) - sm 8) 
. (66) 

then I, from Eq. (72) reduces to 

Next, please note that 

(67) X f  ei(“-“+ + ei(vpnp’)d (75) 
rl= -cc 

With this identity then I, becomes 

I, =Q(v) j~~d0co~Oj~~d~e~~~~~“~ 
0 

(68) 

At this point we need to use the Bessel function identities 
in order to convert eiKsin(OP@) to a form which will make it 
integrable. The Bessel functions are defined as the coef- 
ficients of t” in the Laurent series expansion of G(t, z), 
defined as 

Upon applying ((+c)(a/&j) + v/rc) inside this integral and 
carrying out the 4 integrations (after some algebraic 
manipulations), I, becomes 

XJ,(K)J,+, (K)}. (76) 

Using the fact that )er2nv( < 1 for re(iv) = -wI/o, < 0, we 
conclude that Q(v) from Eq. (65) is simply a geometric 
series which can be cast in the form 

G( t z) = eC=” - lit)/21 - 3 - y PJ,,(Z), 
-cc 

(69) Q(v)= f  eir2no=&. 
n=O 

(77) 
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Using this identity for Q(v) in Eq. (76) finally results in 
the identity for I,, 

O3 
Z,(lc, v)=Z 1 

( 

2nv-2n2-2n+v 

~co (v-n)(v-n- 1) > 

x J,(K) Jn+ l(K). (78) 

We now turn to Z2(~, v). Recall from Eq. (61) that 

z2 = 
s s 

2nde e de, cos e sin 0’ p(e - 0’) ~ irc(sin 0 - sin 0’) 
. (79) 

0 -cc 

The only difference between this and I, is in the presence of 
the sin 8’ in the integrand. By exactly following the same 
steps as we did for Ii, we arrive at 

7-c +m 
Iz(K, v’=5 1 

CJr&)l’ CJmb41’ 

v-l-m -cc > v-m+1 ’ 030) 

Now that we have I, and Z2, after substituting them 
in Eq. (59) using v = w/w, and K = k,v/w,, for a back- 
ground Maxwellian distribution function,fi, = (l/r~~‘~a,, a:) 
e-‘?~‘~i -u:/a:, we finally obtain the analytic dispersion 
relation (we let k, -+ k, without loss of generality): 

1+ jo+” &jv[ v2s]x{(!!@) 

[(2n+l)w-2n(n+l)w,]o, 
(0 - nw,.)(w - (n + 1) 0,) 

xJn(%) Jn+l (%)I)+,$?; 

CJn(W~,)12- CJ,(k,h412 =. c81) 

o+(l--n)o, I> w-(1+n)w, . 

APPENDIX B: THE ERROR DEPENDENCE OF v, 
ON THE TIME STEP At 

In this appendix we give a plausible proof of the (Az)~- 
dependence of the error in vi, introduced upon the finite dif- 
ferencing operations in the Vlasov ion zero mass electron 
model. The starting equations will be the push equations for 
the velocity. Recall from Table I that steps (3) and (7) were 
those of the velocity push in a given time step. Those two 
steps are the following respectively: 

v’=v I- l/2 + (v’- l/2 _ vf’- l/2 ) x B’dt/2 + F:, At/2 (82) 

vi+ 1’2 = v’+ (v’- v”) x B/At/2 + F’, At/2. (83) 

Combining these two steps gives the following result for the 

advancement of the velocity for one full time step from I- 4 
to I+ +: 

v’f l/2 = VIP l/2 + [(v’-‘/’ - + 112) + (v’- vr’)] 

x B/At/2 + F’, At. (84) 

Here Fi is simply the Maxwell stress tensor defined to be 

F;=$V-(+I$ -; j (85) 

The method that we shall use in determining the error 
upon finite differencing will be the following: We use the 
velocity advancement Eq. (84) once with a time step 
At, = 2At and advance vi from I- 4 to I + 3; then we use 
Eq. (84) twice in sequence with the time step At to achieve 
the same goal. We subtract the two results and determine 
the error by observing the dependence of that difference on 
At and the initial conditions at I- $. We must remember 
that the corresponding time step for position-dependent 
quantities is the time step 1 in Eq. (84), e.g., B and the 
Maxwell stress tensor. 

So let us use Eq. (84) with At, = 2At to advance v’- l/2 to 
?‘+3’2. We note that for At, = 2At, one full time step advan- 
cement corresponds to two for the case of using At. Conse- 
quently, as one goes from (I- i) At to (I+ 3) At, the middle 
time is simply (1+ 4) At rather than I At. With this in mind 
then Eq. (84) gives 

~‘+3/2=v’-l/2 + [(v’- l/2 _ $- I/2) + (v’+ l/2 _ f’+ l/Z)] 

x B’+ ‘I2 At + F’B’ ‘I22 At. 636) 

Clearly, advancing v’+ 1’2 obtained from Eq. (84) one 
more time step At will advance it to the time (/+ 3/2) At; 
this gives 

v’+3/2=v’-l/2 + cv’- 112 _ v”- l/-7 + v’- (‘1 

xB’At/2+F:,At 

+ cv 
I+ 112 _ f/+ l/2 + $+ 1 _ $l+ 1] 

x B’+ ’ At/2 + F’,’ I At. (87) 

Subtracting Eq. (87) from Eq. (86) gives 

v’+3/2 -v/+3/2 = Cv’- l/2 _ $- l/2 + v’- v”] 

xB’At/2+F/,At 

+ cv 
I+ 112 _ $I+ l/2 + v’+ 1 _ (I+ 1 

1 

xB’+‘At/2+F;‘At 

_ [v’- l/2 _ (- l/2 + v’+ l/2 _ #d/f l/2] 

x B’+ ‘I2 At - 2FF ‘I= At. (88) 
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As mentioned earlier, we shall attempt to write everything 
on the right-hand side of Eq. (88) in terms of the quantities 
at the starting time, which in this case is (1- l/2) At for the 
velocity and 1 At for the position-dependent quantities. For 
that we again go back to .the Table I. We immediately 
observe from items (5) and (10) that 

B’+ “’ = (B)‘+ F(v’, B’, n’) At/2 

= (B)‘+ O(At) (89) 

B (+ 1 = B’+ 9(,,‘+ 112, B’+ 10, ,I+ l/2) At 

= B’ + O( At). (90) 

Here 9 is just the right-hand side of Faraday’s law. Clearly, 
the second terms on the right-hand sides of Eqs. (89) and 
(90) give rise to terms of order (At)’ and higher when sub- 
stituted in Eq. (88), so we only need to consider the first 
terms of these equations. However, there appears (B)’ 
which is not exactly the same as B’, and that could com- 
plicate our analysis somewhat. We can argue that the act 
of smoothing of the magnetic field could have made 
those quantities very close to each other, since very short 
wavelength disturbances are eliminated by such an opera- 
tion and thus large variations within a grid distance are 
avoided. As a result, for this analysis one can take (B)’ and 
B’ to be the same. Thus the first part of Eq. (88) which could 
have a weaker than quadratic dependence on At will be 
those terms proportional to B’ At, while the second part is 
that which is proportional to the Maxwell stress tensor F,; 
we discuss these terms next. 

The part which is proportional to B/At is: 

{; [+ 112 _ (- l/2 + v/ _ $‘] 

+ 4 [$+ l/2 _ f/f 112 + v/+ I _ $I+ I] 

_ Cv’- 112 _ v’/- 1/2 + ,,I+ I/2 _ ((+ I/2]} x B/ At 

= + {(v/-vl- l/2) _ (vll- $- l/2) 

+ (,,/f 1 _ ,,/f 112) _ (,,,/+ 1 _ ,,‘I+ 19) x B’ At. (91) 

Clearly, since the last two parenthesis in Eq. (91) involve 
quantities at the times (/ + i) At and (1+ 1) At, thus when 
they are written in terms of their respective values at 
(I- 4) At, they will involve terms of the O(At) or higher 
and therefore contribute to quadratic or higher order 
dependence on At. The first parenthesis (v’- v’- ‘I*), on the 
other hand, according to Eq. (82) when written in terms of 
(I - +)-dependent velocities and the I-dependent Maxwell 
stress tensor will have a At dependence and will thus 
contribute to a quadratic dependence on At. The same argu- 
ment goes for the second parenthesis in Eq. (91), since v’ is 
obtained from v by interpolation and should have the same 
At dependence. As a result, the part which is proportional to 
B’ At will have a quadratic or higher dependence on At. 

Finally, we examine the part which is proportional to the 
Maxwell stress tensor, i.e., 

F/,At+F’,f’ At-2F’,f”2At 

={:[ -v.($D -BB)] 

++[ -V@ -BB)1”’ 

-2&[-V@ -BB)I”“‘i At. (92) 

In this equation the only term which can have a At 
dependence rather than a (At)’ dependence is that which 
depends only on B’. After using finite differences for writing 
B’+ 1’2 and B’+ ’ in terms of B’ in the second and the third 
brackets of Eq. (92) we obtain 

3, n’ +-2-&)[ -V@ -BB)yAr 

( 
,/+ 1 

(n 
/+ l/2 _ 4 + q,/+ l/2 -,/+ 1) 

=?Z, &$+ lnl+ l/2 
> 

x[ -V($ -BB)1’Ai. (93) 

Recall that the densities are obtained from the particle 
positions by aerea weighting interpolation [3,4]. For 
example, the density at a given fixed grid location xi at a 
time t = I At is obtained by the weighting scheme, 

n/(x,)= c w(x,(lAt), x,)= C w/(x,(t), x,), (94) 
IE A, itd, 

where t = 1 At is the reference time, and the index i refers to 
particles, while i refers to grid locations. 

Clearly then, upon using a Taylor expansion, one can 
estimate n’+ “’ and n’+ ’ from this equation as follows: 

Likewise, 

n’+‘(xj)=n’(xj)+ c At. (96) 

Clearly then, the two parenthesis which appear on the right- 
hand side of Eq. (93) i.e., (n’+ I”- n’) and (n’+ ‘j2 - J+ ‘), 
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are of the order of A? when written in terms of I time step 
densities, which will then make Eq. (93) of the order At*. 
This then makes it plausible that the error obtained in this 
form Eq. (88) should go as (At)2. 
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